Ford Campus vision and lidar data set

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ford Campus vision and lidar data set

This paper describes a data set collected by an autonomous ground vehicle testbed, based upon a modified Ford F-250 pickup truck. The vehicle is outfitted with a professional (Applanix POS-LV) and consumer (Xsens MTi-G) inertial measurement unit (IMU), a Velodyne 3D-lidar scanner, two push-broom forward looking Riegl lidars, and a Point Grey Ladybug3 omnidirectional camera system. Here we prese...

متن کامل

Ford Campus Vision and Laser Data Set

This paper describes a dataset collected by an autonomous ground vehicle testbed, based upon a modified Ford F-250 pickup truck (Fig 1). The vehicle is outfitted with, a professional (Applanix POS LV) and consumer (Xsens MTI-G) Inertial Measuring Unit (IMU); along with a 3D Velodyne lidar scanner, two push-broom forward looking Riegl lidars, and a Point Grey Ladybug3 omnidirectional camera syst...

متن کامل

Complex Urban LiDAR Data Set

This paper presents a Light Detection and Ranging (LiDAR) data set that targets complex urban environments. Urban environments with high-rise buildings and congested traffic pose a significant challenge for many robotics applications. The presented data set is unique in the sense it is able to capture the genuine features of an urban environment (e.g. metropolitan areas, large building complexe...

متن کامل

Vision and LIDAR Feature Extraction

In this project we will discuss about methods of extracting stable features for camera and laser range finder in order to use these features in SLAM. The methods including dot-product feature extractor and line segment feature extractor for laser range finder, corner feature extractor for camera images. The robot platform we work on is the Segway

متن کامل

Classification of Ford Motor Data

In this work we apply mixed ensemble models in order to build a classifier for the Ford Classification Challenge. We build feature vectors from the data sequences in terms of first order statistics, spectral density and autocorrelation. Our model selection scheme is a mixture of cross-validation and bagging. The outcome is an ensemble model, that consits of several different models trained on r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of Robotics Research

سال: 2011

ISSN: 0278-3649,1741-3176

DOI: 10.1177/0278364911400640